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Abstract—Classical approaches to modelling dynamic or mul-
tivariate impedance spectroscopy data rely on either fitting
individual spectra using an iterative procedure or using a joint
least-squares analysis combined with partial prior knowledge of
the model as a function of parameters which show a dependence
on a control variable such as voltage or time. However, these
approaches often fail to provide accurate results due to their
sensitivity to the initial guess of the model parameters and the
lack of an adaptive modelling approach. We address these limita-
tions by introducing an approach that combines the parametric
modelling of single spectra and use cubic B-splines to introduce
the dependence of such parameters on the control variable. We
illustrate our method by analyzing a set of 50 spectra obtained
from dynamic impedance studies of electron transfer involving a
redox couple in solution. We further demonstrate that the spline-
based method is less sensitive to initial guesses, outperforms
classical fitting methods in preserving the model parameters’
dependence on the control variable and yields a significantly
lower weighted residual mean square value compared to classical
approaches.

Index Terms—dynamic impedance spectroscopy, cubic splines,
fitting, multivariate

I. INTRODUCTION

Electrochemical impedance spectroscopy (EIS) is an analyt-
ical technique that allows us to gain a fundamental understand-
ing of the kinetics and transport properties of an electrochem-
ical system. EIS works by perturbing the electrochemical sys-
tem under test with a low amplitude (≤ 5−10 mV) sinusoidal
signal (single sine) or a multisine signal, either in voltage
or current, and observing the response in current or voltage,
respectively [1]. Multivariate impedance measurements arise
either from taking static measurements (single impedance
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measurements taken over several frequencies of interest) as
a function of some control variable such as potential [2],
temperature [3], and state of charge [4], to mention a few
or by taking dynamic impedance measurements obtained via
multifrequency analysis (DMFA) [5] or some other technique
[6]. This usually results in a sequence of varying spectra.
Compared to a single static impedance measurement, a se-
quence of impedance measurements can offer more thorough
and useful information. Furthermore, since the impedance is
measured over time, it is possible to access dynamic features
of the electrochemical system, including relaxation times and
response times and the detection of temporal patterns. For
instance, the dependence of the rate constant on the potential
can be observed by taking several measurements at differ-
ent potentials. Furthermore, EIS measurements of batteries
recorded under varying conditions of health, temperature, and
state of charge can be used to build predictive models for the
state of health [7].

In order to extract kinetic information about the system from
the obtained spectra, it is common to use equivalent circuit
models (ECM). Equivalent circuit models comprise a finite set
of passive elements such as resistors, capacitors and inductors.
They may also contain generalised impedance elements such
as the Warburg and Gerischer elements [8]. These equivalent
circuit models serve as simplistic representations or analogues
of the electrochemical system. In addition, generalised mathe-
matical models such as rational polynomials with coefficients
can be used to characterise the electrochemical system [9].
The process of fitting an equivalent circuit involves regression
of the chosen model to the experimentally obtained impedance
spectra.

The process is relatively straightforward for fitting single
spectra as obtained from static impedance measurements. The
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most common approach uses complex non-linear least squares.
While this method works relatively well, it can be sensitive
to the choice of initial guess and sometimes fail to converge.
Several techniques have been developed to work around this
issue, such as genetic algorithms [10] and partial impedance
circuits [11] for automatic parameter identification. To avoid
convergence issues arising from parameters going off-limits
and inaccuracies resulting from calculating the Jacobian via
finite differences, Mark Zic et al. [12] used a strategy that
involved computing the Jacobian symbolically. They also
incorporated the use of limits to keep the parameters within
bounds during optimization. However, analytic derivatives are
not always available especially when the equivalent circuit
model/impedance function becomes more complex – hence
the need to rely on alternative methods of tackling the issue
of poor convergence.

The situation is slightly different for multivariate impedance
fitting since a second dimension in addition to the frequency
variable is introduced. Nevertheless, there are different ap-
proaches to fitting such types of impedance data. One pro-
cedure is using ”fit from previous” which uses the optimal
parameters from a fit of previous spectra as the initial guess for
subsequent spectra in an iterative manner. This method has an
inherent disadvantage: when the parameter values of previous
spectra go off limits, the fit worsens in the subsequent spectra.
Dygas et al. [13] presented a two-step joint least-squares
analysis (as implemented in their MULTFIS program) where
an ECM is first regressed on individual spectra using a least-
squares fit and then the dependence of the model parameters is
evaluated in a second step by imposing a functional form of the
dependence of the parameters on the control variable. Their
method was restricted to modelling temperature dependence
and used the slow derivative-free simplex algorithm. Another
limitation was the potential for uncertainty arising from fit
errors made in the first step propagating into the second step.

Alberto Battistel et al. [14] proposed a procedure for fitting
data obtained from DMFA. This method did not impose a
functional form of the dependence of the parameters on any
control variable. Instead, they proposed the minimization of a
custom cost function that combined the classical non-linear fit
(of all the spectra) and an additional term, which is the squared
norm of the second derivative of the parameters with respect
to the impedance index. The latter is a measure of the local
smoothness of the parameters. A vector of smoothing factors
was used as a penalty which controlled the trade-off between
minimizing the chi-square and how smoothly the parameters
vary from one spectra to the other. As the smoothing factor
increases so does the smoothness of the parameter curves. In
other words, the sum of the chi-square and the concavity of
the parameters was minimized. This method is less sensitive
to initial values and could actually be used to obtain starting
parameters for subsequent fit. Also, this method allowed
the parameters to vary smoothly between successive spectra.
Nevertheless, choosing the appropriate value of the smoothing
factor required cross-validation, which can be time-consuming.

This study proposes a new approach. We give a parametric

model for the single spectra, accounting for the frequency
dependence of the impedance, and we model the dependence
of the parameters with time as the control/indexing variable
using B-splines of degree three (cubic). Using 50 sets of
experimental impedance data obtained from the negative scan
of dynamic impedance studies on redox couple in solution, we
compare the batch fitting mode of the open-source impedance
fitting python package Impedancepy [15] (later referred to as
classical-fitting) with the spline-based approach (later referred
to as spline fitting). We show that the spline-based method
produces more accurate fits, is less dependent on the choice
of starting parameters and preserves the smooth variation of
the parameters.

II. DESCRIPTION OF THE METHOD

A. B-splines

B-splines are piecewise polynomial curves defined by their
degree p, order l = p + 1, and their knots. The degree is
equivalent to the degree of the polynomial. The knots are the
elements of the knot vector x = {xn} and represent specific
points in the domain of the B-spline where two polynomials
join. The knot vector is defined such that xn ≤ xn+1 for all
n = 0, 1, . . . , N − 1. Two exterior knots define the overall
domain of the regression. The piecewise polynomial between
a pair of adjacent knots is of degree p, where p is one less than
the order of the B-spline. A B-spline of order l is characterized
by continuous mth derivatives for m = 0, . . . , l − 2. This
definition imposes smoothness constraints on the piecewise
polynomials. For instance, a cubic B-spline with l = 4 has
continuous zeroth, first and second derivatives. B-splines are
represented by employing a collection of basis functions and
coefficients for simplicity and computational efficiency.

The set of N − p+ 1 B-spline basis functions {Bn,p}N−p
n=0

are defined by De-Boor [16] recurrence relations for every
n = 0, 1, . . . , N − p as follows:

For p = 0:

Bn,0(t) =

{
1 : xn ≤ t < xn+1

0 : otherwise

}
. (1)

And for p > 1:

Bn,p(t) =

(
t− xn

xn+p − xn

)
Bn,p−1 (t)

+

(
xn+p+1 − t

xn+p+1 − xn+1

)
Bn+1,p−1 (t)

(2)

where Bn,p(t) is the B-spline, n is the index of the control
point, p is the order of the B-spline t is the parameter value,
and xn represents the nth knot value. Fig 1 shows the cubic
B-Spline basis functions with 13 uniformly spaced knots as
(dashed lines) and the spline (solid line) is represented as a
superposition of the basis functions before the minimisation
of the spline coefficients.
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Fig. 1. Plot of the B-spline basis (degree=three, 13 knots). The dotted lines
represent the basis functions while the thick lines represent the spline itself
represented as a superposition of the basis functions before minimisation

B. Choosing the optimal number of knots

Selecting the right number of knots is crucial to the per-
formance of B-splines. A large number of knots can result in
overfitting, while insufficient knots can lead to underfitting.
Since we chose a uniform spacing for the knots in this study,
the spline’s complexity is characterised only by the number of
knots. Thus the optimal number of knots corresponds to that
with the minimum value of the Akaike information criterion
(AIC) [22]:

AIC = −2 ln L̂+ 2(dimθ̂)K (3)

The first term in (3) contains the log-likelihood estimator
which estimates, with some bias, the difference between the
true distribution and the best model within a specific parameter
space, dimθ̂ is the number of parameters and K is the
number of knots. The second term on the right represents
the effective model dimension and adjusts for bias [23]. The
AIC as modified for complex impedance data for the case of
modulus weighting by Ingdal and Harrington [24] was used
in place of the original formula.

Another measure is the Akaike weight, which is between 0
and 1. It gives the probability that the model with the minimum
AIC is the “best” among a number of candidate models. The
Akaike weight Wi is defined as:

Wi =
exp (− ∆i/2)

N∑
j

exp (− ∆j/2)

(4)

where ∆i = AICi − min (AIC). Fig 2 shows the Akaike
weight plotted as a function of the number of knots for the
fit carried out on the experimental data. The optimal number
of knots can be seen to be 13 and this value corresponds to

the model with the highest probability given in terms of the
Akaike weights. This value was used further in the analysis.

Fig. 2. Example of a figure caption.

C. Equivalent circuit models and starting parameters

Fig. 3 shows the equivalent circuit model used in this study.
It is a modified Randles Circuit with the description of the
component elements given below:

Fig. 3. Schematic representation of the equivalent circuit (modified Randles
circuit) used.

• Rs represents the uncompensated solution resistance.
• Qdl represents a constant phase element (CPE) which is

used to describe the double layer.
• Rct is the charge transfer resistance.
• Zw represents the planar infinite Warburg element.
• Rw accounts for the dynamic effect on the impedance.

the value of Rw could also be negative.
The starting parameter values and bounds are given in Table
1.

D. Model regression

We model the single impedance spectra with a function
Zθn(ω). We attribute the variation of the spectra as a function
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TABLE I
STARTING PARAMETER VALUES AND BOUNDS USED IN THE FIT

- Rs (Ωm2) Qdl (Ssnm−2) n (−) Rct (Ωm2) Wct (Ωs−0.5m2) Rw (Ωm2)

Starting values 1.0e-2 3.0e-06 0.93 1.1e+04 4.7e05 1.3e06
Lower bounds 1.0e-15 1.0e-9 0.1 1.0e-15 1.0e-15 1.0e-15
Upper bounds 1.0e15 1.0e2 1.0 1.0e15 1.0e15 1.0e15

of the control parameter t to the variation of the parameters θd
on t, thus the overall fitting function is Zθd(t)(ω). The goal is
to obtain the time-varying parameters of the impedance model
θd on t using B-splines, thus we model the time dependence
as a superposition of spline basis functions Bn,p(t):

θd(t) =

N∑
n=0

CBn,p(t) (5)

where θd(t) represents the parameters of the model at time
t, C is a matrix of coefficients, the rows of which have
the same length as the number of parameters in the model
and the columns have the same length as the number of
basis functions. Bn,p(t) is a matrix. The rows of this matrix
represent time steps, and the columns correspond to the basis
functions. Thus the optimal set of spline coefficients Ĉ is
defined such that:

Ĉ = argmin
C

L(C) (6)

where L(C) represents the total cost function given by (7),
minimized over all possible coefficients C.

L(Ĉ) =
T∑

t=1

χ2
t (7)

The term χ2
t on the right hand side of (7) is the scaled version

of the chi-square represented as:

χ2
t =

Nf∑
i

wi

{
ZRe,i − ẐRe,i [θd(t)]

}2

+

Nf∑
i

{
ZIm,i − ẐIm,i [θd(t)]

}2

(8)

where Nf , Zi, Ẑi, wi, θd, Re and Im represent the num-
ber of data points (frequencies measured), the ith value of
the experimental impedance, the ith value of the calculated
impedance, the weight associated with the ith frequency, the
ECM parameters, real and imaginary respectively. We used
modulus weighting for the fit. The bs function of Patsy’s
dmatrix [17] module was utilized to create the entire matrix
of basis functions. Python’s JAX library [18] was used to im-
plement the minimization function, which allows for accurate
computation of gradients through automatic differentiation,
resulting in better convergence and eliminating inaccuracies
associated with numerical finite differences. The spline fitting
was done using JaxOpt’s [19] ScipyMinimize module, with

the TNC method. The bounds were used to transform the
parameters from linear to log scales, effectively shrinking the
algorithm search space. We used the CustomCircuit module
of Impedancepy [15] for the classical-fitting. The fitting al-
gorithm used in Impedancepy [15] is based on Scipy’s least-
squares optimization module [20]. It is important to mention
that with bounds provided, Impedancepy [15] uses the trust
region reflective method of least-squares. Fig 4 depicts graph-
ically the cubic B-Spline basis functions with 13 uniformly
spaced knots (dashed line) and the spline (continuous line)
after minimisation. The spline represents the parameter as it
varies with time.

Fig. 4. Plot of the B-spline basis (degree=three, 13 knots). The dashed lines
represent the basis functions while the solid line represents the spline itself
represented as a superposition of the basis functions after minimisation

III. RESULTS AND DISCUSSION

Details on how the data was obtained have been given
elsewhere [21] and will not be described here. The results of
the fitting process for the approaches considered are shown in
the Nyquist plots (Fig. 5). Only selected indexes are shown due
to space constraints. Notice that the classical-fitting approach
fails to fit the impedance at certain indexes. For instance, the
fit at index 30 can be seen to be clearly off. On the other hand,
the fitted results for the spline-fitting agree well visually with
the experimental data over all the indexes shown. This fact
suggests that the spline method is less sensitive to the choice
of starting parameters.
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Fig. 5. Nyquist plots showing the experimental data and the model for the results obtained from (a) classical-fitting and (b) spline-fitting and the plot of fit
parameters as a function of time (shown here as the spectra index) for the (c) classical-fitting and (d) spline-fitting.
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Fig. 6. Residual errors for the classical-fitting plotted as a function of frequency for the (a) real and (b) imaginary parts and as a function of voltage for the
(a) real and (b) imaginary parts. The red line represents the mean of the values.
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Fig. 7. Residual errors for the spline-fitting plotted as a function of frequency for the (a) real and (b) imaginary parts and as a function of voltage for the
(a) real and (b) imaginary parts. The red line represents the mean of the values.

Next, to present a comprehensive analysis of the effect of
using the spline method, in Fig. 5 (c) and (d) we show the plots
of the resulting parameters as a function of time. Evidently, the
spline fitting preserves the dependence between the parameters
and allows meaningful trends to be established. However, the
trend resulting from the classical-fitting appears much noisier.
Moreover the spline fitting yields a lower weighted residual
mean square value of 2.81 × 10−5 compared to a value of
14.53 obtained for the classical approach with the chosen

set of initial parameters presented in Table 1. The time it
takes to fit the set of 50 spectra is comparable in both cases.
On a Windows machine equipped with 32GB RAM and an
Intel(R) Core(TM) i7-8750H CPU running at 2.20GHz, the
classical-fitting took 7.8 seconds while the spline fitting took
11 seconds. A longer time is needed to determine the optimal
number of spline knots; when it is factored in the spline
fitting takes 90 seconds. While the computation time of 90
seconds might seem considerable, it’s important to note that
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this approach obviates the need for selecting an optimal set of
initial values. Given this significant advantage, we argue that
the computation time is a worthwhile trade-off.

In order to accurately evaluate the residuals from the fit
for both methods, the starting values for the classical-fitting
were chosen to be closer to the optimal values. The plots of
the normalized residuals (i.e normalized by the magnitude of
the impedance) as a function of frequency and voltage for
the spline-fitting and classical-fitting methods are presented in
Fig. 6 and Fig. 7 It can be seen that the normalized residuals of
the classical-fitting method show a larger deviation at higher
frequencies as shown in Fig. 6 (a) and (b). This is a result
of the method failing to fit the high-frequency points whereas
the spline-fitting method was able to fit all the points and
also resulted in lower residuals (less than two per cent of the
magnitude) compared to the classical approach.

IV. CONCLUSION

We have reported a simple and efficient approach for fitting
complex impedance data here. This method combines para-
metric modelling and the use of cubic B-splines. Automatic
differentiation was successfully applied to compute the gradi-
ent of the cost function with respect to the parameters of the
equivalent circuit model. The optimal value of the knots of the
spline is chosen using the Akaike information criterion, thus
preventing underfitting and overfitting of the parameters. The
method is tested on a set of 50 spectra obtained experimentally
and compared with the classical approach to fitting multiple
spectra as implemented in Impedancepy. The major advantages
of the spline-based method are the insensitivity to the choice
of starting parameters and the preservation of the dependence
of the parameters on the indexing variable. The method is also
fast thanks to the JIT compilation provided by the Jax library.
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[12] M. Žic, “Solving CNLS problems by using Levenberg-Marquardt al-
gorithm: A new approach to avoid off-limits values during a fit,” J.
Electroanal. Chem., vol. 799, no. March, pp. 242–248, 2017, doi:
10.1016/j.jelechem.2017.06.008.

[13] J. R. Dygas, K. Pietruczuk, W. Bogusz, and F. Krok, “Joint least-squares
analysis of a set of impedance spectra,” Electrochim. Acta, vol. 47, no.
13–14, pp. 2303–2310, 2002, doi: 10.1016/S0013-4686(02)00078-6.

[14] A. Battistel, G. Du, and F. La Mantia, “On the Analysis of Non-
stationary Impedance Spectra,” Electroanalysis, vol. 28, no. 10, pp.
2346–2353, 2016, doi: 10.1002/elan.201600260.

[15] M. D. Murbach, B. Gerwe, N. Dawson-Elli, and L. Tsui, “impedance.py:
A Python package for electrochemical impedance analysis,” J. Open
Source Softw., vol. 5, no. 52, p. 2349, 2020, doi: 10.21105/joss.02349.

[16] C. de Boor, A Practical Guide to Splines, Revised ed. New York, NY,
USA: Springer-Verlag, 2001.

[17] N. J. Smith et al., ”pydata/patsy: v0.5.3,” Zenodo, 2021. [Online].
Available: https://doi.org/10.5281/zenodo.592075.

[18] J. Bradbury et al., ”JAX: Composable transformations
of Python+NumPy programs.” [Software]. Available:
http://github.com/google/jax. Version 0.3.13. 2018.

[19] M. Blondel et al., ”Efficient and Modular Implicit Differ-
entiation,” arXiv preprint arXiv:2105.15183, 2021. Available:
https://arxiv.org/abs/2105.15183.

[20] P. Virtanen et al., ”SciPy 1.0: Fundamental Algorithms for Scientific
Computing in Python,” in Nature Methods, vol. 17, pp. 261-272, 2020.
[Online]. Available: https://rdcu.be/b08Wh. doi: 10.1038/s41592-019-
0686-2.

[21] R. Chukwu, J. Mugisa, D. Brogioli, and F. La Mantia, “Statistical
Analysis of the Measurement Noise in Dynamic Impedance Spectra,”
ChemElectroChem, vol. 9, no. 14, 2022, doi: 10.1002/celc.202200109.

[22] D. V. Likhachev, “Selecting the right number of knots for B-spline
parameterization of the dielectric functions in spectroscopic ellipsometry
data analysis,” Thin Solid Films, vol. 636, pp. 519–526, 2017, doi:
10.1016/j.tsf.2017.06.056.

[23] T. Mackenzie, “Modelling a Time-dependant Hazard
Ratio with Regression Splines,” 1993, [Online]. Available:
https://scholar.google.com/scholar?

[24] M. Ingdal, R. Johnsen, and D. A. Harrington, ”The Akaike infor-
mation criterion in weighted regression of immittance data,” in Elec-
trochimica Acta, vol. 317, pp. 648-653, Sep. 2019. [Online]. Available:
https://doi.org/10.1016/j.electacta.2019.06.030

8


